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We study a generalization of the Harris one-dimensional contact process in 
which the rates of infection to the right and left may be different. 
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1. I N T R O D U C T I O N  

Contac t  processes were first studied by Harris. (8) They can be considered as 
very idealized models for the spread of an infection and are also closely 
related to oriented percolation. (2"7) Fo r  reviews see Refs. 6, 7, and 11. 

The most  extensively studied of these models is the basic contact  
process in one dimension (BCP). Informally  one can describe it in the 
following way: individuals are located at all the sites of  the lattice 7/ (one 
individual at each site) and each one can be either infected or  healthy. The 
infected individuals recover at a constant  rate, which can be chosen as 1; 
and the healthy individuals become infected at a rate which is propor t iona l  
to the number  of infected nearest neighbors.  

In this paper  we consider a family of  processes which generalizes the 
BCP in the sense that  the rates of  infection to the right and left may  be dif- 
ferent. The state of  the system is determined by the set of infected 
individuals; so for each (2r, 2t) ~ ~ + x ~ + (the rates of  infection to the 

t right and left) and t / c  7 /consider  the process (~.r, xt(), t/> 0), taking values 
on the set ~ ( 2 )  of  the subsets of  2,  starting from t / a t  time 0 (~r,).t(0) = 
a.s.) and evolving according to the following local rates of change:  
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r l~r l / {x  } withrate 1 if xe t /  

t 
2 r if xq~tl, x - - l e r l ,  x + l ~ r l  

r l~ r lw  {x } withrate 2t if x~tl ,  x -  l q~tl, x + l erl 

2r-F2 t if xCrl, x - l ~ t l ,  x + l e r l  

The symmetric case 2 r=2 /  corresponds to the BCP. Another par- 
ticular case which has been studied in some detail in the literature is the 
one-sided (one-dimensional) contact process (OSCP)(6); it corresponds to 
the c a s e s  2 r = 0 ,  2/> 0 or 2r > 0, ,~/= 0. 

Our motivation for studying this generalized one-dimensional contact 
process is the fact that it shows a behavior which is much richer than that 
of the particular case studied yet. For any (2~, 2/)e ~ 2 ,  Theorem 3.13 of 
Chapter lII of Ref. 11 (first proved in Ref. 10) applies, implying the 
existence of at most two extremal invariant probability measures. One of 
them is trivially 6~ (point mass on ~ )  and the other is the weak limit of 
the law of z r as t--* o% denoted v~r,~ z. The process is ergodic for the 
values of (2r, 2/) such that vz,,~,= 6~. 

For the BCP there is a critical value 2c ~ (0, oo ) such that if 2 r = 2/< 2 c 

the process is ergodic. If 2 r = 2 / = - 2  > 2 c ,  then v~.,~ r 6~ and the so-called 
complete convergence theorem (CCT) holds(~): 

v~ ~ z, ~7.,~,(t) ~//v~,~. + (1 - / / )  6~ 

where / / = P ( r 1 6 2  Vt~>0). The behavior of the BCP when 
2~ = 2 /=  2~ is still an open problem; one does not even know in this case 
whether the process is ergodic or not. 

For the OSCP there is also a critical value 2 + e (0, oo) such that the 
process is ergodic if min(2~, 2l) = 0, max(2~, 2/) < 2~ + . If min(2r, 2/) = 0 and 
max(2 ,  2 t )> 2 + , then v).~,~ r r e ,  but the CCT does not hold; instead one 
has(6): 

Vt/~ Z s.t. I~/i < oo, r ~ 6~ where I~/I is the cardinality oft/ (1.1) 

There are configurations r/~ 7/s.t. ~r,~(t) does not converge in law (1.2) 

The system that we consider in this paper shows a rich "phase 
diagram" (see Fig. 1). There is a region sr in which it is ergodic; a region 
~ in which it is not ergodic and (1.1) and (1.2) hold; and a region ~2 
where the system is not ergodic and the CCT holds. The more interesting 
behavior occurs, however, for ( 2 . 2 / )  on the boundary between ~1 and ~2; 
in that case we prove that 

Vr/c 7/s.t. Iql < oo 

r ~ (///2) v,,,a, + (1 - / / / 2 )  6 e (1.3) 
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Fig. 1. 
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The phase diagram. The author's conjectures were incorporated except for 0 c = re/4. 

where, as before, fl = P(~r,x,(t)# ~ ,  Vt/> 0). We prove also that there are 
configurations t/ with infinite cardinality such that the same is true (with 
fl = 1) and in some cases we specify such configurations. And there are also 
configurations t /such that ~r,~t(t) does not converge. 

The behavior on the boundary between d and N1 u ~ 2  is as com- 
plicated as on the critical point 2c for the BCP and we have nothing to say 
about it. 

Besides the behavior of the system for (2r, 2t) on each of these regions 
we get results about the shape and size of the regions. 

The techniques used for the BCP mostly generalize to the asymmetric 
case. We suppose that the reader is familiar with these techniques. 

This paper is organized in the following way. In Sect. 2 we construct 
the processes using a directed percolation structure (DPS), introduce the 
basic notation, and recall the main properties. 

In Sec. 3 we prove some of the simplest properties of the boundary ll 
o f d .  

In Section 4 we prove some results about the "edge processes" rt = 
max~r ,~( t  ) and l ,=min~r+~(t) ,  where 7/ = {  .... - 2 , - 1 , 0 } ,  7 /+= 
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{0, 1, 2,...}. Some of these results are simple extensions of the similar 
statements in the symmetric case, but others are of interest only in the 
asymmetric case. 

In See. 5 we introduce MI, ~2 and the boundary 12 of M2. 
In Sec. 6 we verify that the construction introduced by Durrett  and 

Griffeath ~3) relating the BCP to a one-dependent percolation process can 
be generalized to the asymmetric case. We employ this trick and its con- 
sequences to get more information about the geometry of l~ and l 2 .  

In Sec. 7 we employ the "invariant measure as viewed from the edge" 
in order to get more information about Iz. The existence of such a 
probability measure was proven by Durrett  r for a process in discrete time 
(oriented percolation) closely related to the BCP. His results can be exten- 
ded easily to the BCP and the asymmetric contact process. The uniqueness 
of this measure was proven, among other things, by Galves and Presutti. ~4) 
We employ the techniques and results in Ref. 4 to get some results which 
are of interest even in the symmetric case (Theorem 18). 

In Sec. 8 we prove (1.3) and related results when ( 2 ,  zt)~ 12. The basic 
ingredients for the proof are the central limit theorem for the edge 
processes proved in Ref. 4 and the technique used by Griffeath to prove the 
lemma on page 383 of Ref. 5. 

Finally, in Sec. 9 we list some open problems. 

2. CONSTRUCTION OF THE PROCESS. 
NOTATION AND BASIC PROPERTIES 

In order to prove some of our results we need the following construc- 
tion of the contact process using a directed percolation structure (DPS) on 
Z • E+.  We employ the notation in Ref. 4, which is very clear. For  each 
x~Z ,  let (U~X,x+l): n =  1, 2,...), (U~X,x-1): n =  1, 2,...), and (U~" n =  1, 2,...) 
be three independent Poisson point processes in E+ with intensity 2r, 2l, 
and 1 respectively. We suppose that for x varying in 7/these poisson point 
processes are all independent and we denote by (t2, Z, P)  the probability 
space in which they are defined. 

Given s, t in ~ + with s < t, x and y in Z, and ~o in s we will say that 
there is a m-path from (x, s) to (y, t), and write (x, s)) ~ '  (y, t) if there 
exists a finite sequence of points Xo, Xl,...,xk with xo=x,  x k = y  and 

(xo,  x t )  (D i x i - x ; + l ] = l  and integers n~,...,nk such that s<U, l  ( ) < ' " <  
(x~ t xk) U,k , (~o) < t and moreover that the following situations 

U(.TJ:l,x~)(~o) ~< U~(~o) ~< U(Xj, XJ+')(~) 
j ~ n j + l  

s~  u;.(o~)<<, u(.i,x,)(~o), u(.~ ?.~)(~o)<~ u~(o))<~t 
do not occur for any index j and m. 
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The contact process takes values in the set N(7/) of subsets of 2~, whose 
elements we will usually call a "configuration." Given a configuration q, 
two times s < t, and a point co in O, we define the configuration 

(r ~,  (x , t )}  .,.r..tl ~ J J x  i 

~(".=)r f2--. ~(7/) is then a random configuration. 2 r , 2 1 \  1" 

If s =  0, we will write only ~.~, ( t ) ins tead of ~;~ If t /= {x}, x ~ ~, 
we wi l  write only /:(x,=lt~ If there is no possibility of confusion, we will 

~ 2r,  21l, v ]" 

omit '~r, )'t in the notation. 
The process (~,,a~(t), t >~ 0) constructed on (s Z', P) is a version of the 

contact process as defined in the introduction. This construction using a 
DPS is particularly suitable in order to couple processes starting from dif- 
ferent configurations in a useful way (see P1 below). 

One can enlarge the space (f2, S, P)  in order to define processes 
starting with a random initial configuration independent of the DPS. In 
this case we will denote the process by (~r,~,t(t), t >7 0) where # is the law of 
the initial configuration. 

We will use the following notation: 

z (~'s) = inf{t ~> s: ~(, , ' ) ( ta  = ;25} 
)Cr,~. I .~r,)~l\ ] 

"C 2r~21 2r,  J.l 

. c ( { x } , s )  _ ~-(x,s) 
).r, Ri - -  ~ ~r,)q 

z (",=) - v(q's) if no confusion is possible. Ar,21 - -  

Given q c ?7, we denote the cardinality of r /by  I~1, and define also 

r(~/) = sup t/, l(r/) = inf(r/) 

Finally we write 

r~r, xj(t)  = r ( ~ , , x t ( t ) ) ,  l~r,x,( t ) = l( ~r,). ,( t ) ) 

and abbreviate r 7 = r~r,),,(t), 17 = l~r,x~(t), when it is possible. For  q = Z_ = 
{..., - 2 ,  - 1 ,  0} we write r , = r x r ,  a , ( t )=r f ,7~ , ( t ) ,  and for r/= 7/+ = {0, 1, 2,..} 
we write It = l),r,),,(t) -= lf+~,(t). 

Some basic properties that follow from the construction and which the 
reader familiar with the BCP can easily prove are the following: 

(P1) Additivity: If A, B, C c  Z and A = B u  C, then 

~(A'=)(t) = ~(s'=)(t) u ~(C's)(t)  for any t ~> s ~> O. 
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(P2) Symmetric-duality: If A, B c Z, then 

(P3) On the event [ z~  t] the relation 

~~ r~ U, ,  r,3 = ~"(t) c~ El,, r ,]  

holds for any r/such that 0 ~ q. 

(P4) The law of ~r.~(t) converges weakly as t ~ oo. The limit is a 
translation-invariant measure which will be denoted by v).r.~r Its 
density will be denoted by p(2r, 2t)= V;~r,~, (q: 0 e r/). 

(P5) p(,1. r, 2 , )=p(2, ,  2,) 

(P6) p(Xr, 2 , )=  P(z~ co) 

(P7) If 2"/> 2r and 2~ >~ 2~ then p(2'r, 2~) ~> p(2r, 2t). 

(P8) If 2'~>~2r and 2}~>2l, one can construct 

{(~,.~,(t), t~>0):r/=7/} and {(~.).t(t), t~>0):~/=Z} 

on the same probability space in such a way that for any r/~ 77 
and t >~O, ~'d~.~.,(t)~ ~;.~}(t). 

Since we will need this construction, we will specify it now. For each x E Z, 
take (U r n =  1,2,...), (U~ ~,~-1)" n = l ,  2,...), and (U~: n =  1,2,...) as 

x - - n  

before. Take also other two-independent Poisson point processes (V~ ~,~ + ~): 
n =  1, 2,...) and (V~ ~,~ 1): n =  1,2,...) with intensity 2'r--'~r and 2 ) -2 l .  We 
suppose that for x varying in 77 these Poisson point process are all indepen- 
dent. Define (W~'Y~: n = 1, 2,...) as the Poisson point process obtained by 
the superposition of (U~ ~, Y)) and (V~ ~, Y)), y = x -  I, x + 1. Finally construct 
(~r ~,(t)) as before and (~;  ~,(t)) in a similar way, using (W~ ~'y)) instead of 

, , / . . 

(x) (U~'Y)), y = x - 1 ,  x +  1, but using the same ( U , ) .  When working with 
this enlarged space we will denote it also by (s _r, p). 

For several purposes it will be convenient to localize points (2~, 2t) on 
the phase diagram using polar coordinates cr E ~ +, 0 ~ [0, n/2] defined by 

2r = rr COS 0 2t = a sin 0 

But instead of a we will in general use 2 = (2r + 2~)/2 ---- a(sin 0 + COS 8)/2. 
For convenience we define c(O) = 2 cos 0/(sin 0 + cos 0), s(O) = 2 sin 0/ 
(cos 0 + cos 0). Then 

2~ = 2c(0) 21 = 2s(O) 

For each fixed 0 the family of processes obtained by varying ,~ will 
play an important role. This families will be called "radial families," for an 
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obvious reason. When 0=re/4, we have the BCP; and when 0 = 0  or 
0 = ~/2, the OSCP. 

Warning about notation: We adopt the convention that C and ~ will 
denote constants, but from equality to equality their values may change. 

3. FIRST CRIT ICAL LINE 

Define /7(2, O)=p(2c(O), As(0)). Then P7 in Sec. 2 implies that the 
function 2 ~ fi(2, 0) in increasing for each 0. As for the BCP, define 

2c1(0 ) = sup{2 e ~+ :/7(2, 0) = 0} 

~r~l(0 ) = 22~l(0)/(sin 0 + cos 0) 

It was demonstrated in Ref. 9 that if 2 > 2 the process is not ergodic 
and 

p(2r, 21)=/7(2,0)~ @ 1 22 

On the other hand, for any finite ~1 c ~, diam(~],.;~t(t))= r(~,~,,;4(t))- 
l(~,~(t)) increases one unit at rate 2,, 2 l=  22 and decreases at least one 
unit at rate 2. So if 2 <  1, /7(2, 0 ) = P ( r  {~ = oo)=0 .  The process is then 
ergodic. 

From the last two paragraphs we conclude that for any 0 ~ [0, ~/2], 
2c1(0) ~ El, 2]. 

Theorem 1. 0 ~ 2~a(0) is a continuous function. 

Proof. Consider a fixed 0e  [0, ~/2]. Given an ~ > 0  we take 2~ = 
2~1(0) - e/2, 22 = 2d(0) - e/4, 23 = 2~(0) + e/4, 2 4 = 2e1(0 ) ~- 8/2. Take now 
6' > 0 such that 

0 < 6 < 6 t =:~ 24(S(0 ) - -  6 )  > 23S(0 ) 

24(C(0 ) - -  6)  > 23C(0 ) 

21(s((0) + 6) < 22s(0) 

21(c(0) + 6) < 2~c(0) 

Now there exists a 6 > 0  such that 10'-Ol<6~ls(O)-s(O')l<6' and 
I c (0 ) -  c(0')l < 6'. Then, if l 0 -  0'1 < 6, it follows that: 

(i) 24S(0' ) > 23S(0 ) and 24c(0') > 23c(0). Then, since 23 > 2c1(0), 

0 e(  T.24c(O,),24s(O, ) = o0) ~ P( r~ 0(3) • 0 
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Therefore  2 4 ~ 2c1(0' ). 

(ii) 21S(0 t) < )~2S(0) and 21c(0' ) < ARc(0). Then, since /~2 < ~'cl(0), 

p o (r~(o,),~(0,) = oo) ~< e ( z ~  ~o),~(o) = oo)  = 0 

Therefore 21 ~< 2~1(0'). 

In conclusion [0-0 ' J  < 6 ~ 2 ,  ~<2~(0')~<24~ 12~,(0')-2~,(0)1 <e.  | 

Remark. Since for each 0, a is a continuous function of 2, 0 --+ a~,(O) 
is a continuous function and defines a curve on the phase diagram (2 ,  2,). 

We divide the phase diagram (2~,2t) in the subcritical region ~ ,  the 
supercritical region ~ ,  and the curve 11 which separates them, defined as 
follows: 

/~ = { ( 2 . 2 3  ~ ~ + • ~ + : 2 = , L ~ ( 0 ) }  

T h e o r e m  2. (2r, 2z) ~ p(2~, 2~) is a continuous function on ~.  

Proof. For (2r, 2t) ~ ~2+ define B~(2r, 2t) = {(x, y) ~ ~ 2 .  I x -  2rt < (~, 
l y -2z l  <~}.  

First consider (2r, 2t) eM such that 2 r , 2 t r  Then P7 of Sec. 2 
implies that for 6 sufficiently small 

sup Ip(2'r, ~'t)--P(2r, 2,)1 ~ P(L + ~, 2 t+ ~ ) - -p (L- -~ ,  ~,--~) (~, ~'r ~ B~(~r, ~t) 

So it is enough to prove that x-~ p(2r + x, 2 t+ x) is continuous at x =0.  
Theorem 1 implies the existence of c5>0 such that ((2r+x, 2z+x): x~ 
( - 6, 6) } c B. The continuity at x = 0 now follows from the same argument 
used in the proof of the analogous theorem for the BCP (Theorem 1.6. (d) 
of Chapter VI of Ref. 11). 

For ()~r, 2l) ~ ~ such that )~t = 0 

sup ]p(2'r, 2'l)--p(2r, 2l) i ~ p(2r"]- (~ , 21+ ~)--p(2r--  ~ , 2l) 

Now the proof can be completed as before using the continuity of the 
functions x --+ p(2~ + x, 0) and y --+ p ( 2  r + y, y), (y ~> 0), at x = 0 and 
y = 0 .  

The case 2r = 0 is analogous. | 
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4. EDGE P R O C E S S E S  

Recall the definitions of r, aand l, in the introduction and define 

~ ( 2 , ,  2,) = E(rt) 

The following two theorems can be proven in complete analogy with 
the corresponding theorems for the BCP (Theorems2.19 and 2.24 of 
Chapter VI of Ref. 11, first proven in Ref. 1). 

Theorem 3. 

1 ~1 
(a) ~1= lim c ~ = i n f ~ [ - o o ,  oo) 

t ~  I t > o  t 

5~2~  

2 0~2 
lim c~ = inf ~ E [ - 0% m ) 
,~oo t t>o t 

(b) lim r~ - - ~  ~1 a.s. 
t ~  t 

lim It 
- - =  - -  ~ 2  a . s .  

t ~ o o  t 

(c) I f e ~ > - 0 %  then t-oolim E ~ - c q  = 0  

Ifc~ 2 > - o %  thentlimoo~ E l t + ~ 2  = 0  

Notation: When we need to specify the dependence on (2r, 2t), we 
write ~i(2~, 2~) ( i=  1, 2). Observe that c%(2r, 2 / )=  e](2l, 2~). 

Theorem 4. 

~(2r  + 6, 2t)/> ~1(2r, 2t) + 6 

~2(2 .2 t  + 6)/> ~2(2r, 2t) + 6 

P8 in the introduction implies that (Xl(/~r, /~l) is nondecreasing in both 
arguments. Theorem 4 shows that it is strictly increasing in 2 r. We will 
prove now that it is also strictly increasing in 2 t. 

Theorem 5. For each fixed 2~, 2l ~ ~1(2,, 2l) is a strictly increasing 
function. For each fixed 2t, 2r --* c%(2r, 2~) is a strictly increasing function. 
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ProoL Both statements are, of course, analogous and we prove the 
first one. Take (2 ,  2t) and (2 ,  2~ such that 2~>2t. Consider now the 
coupled versions of (~,~.,(t), t~>0) and (~,~;(t), t~>0) as constructed in 
Sec. 2 for the proof of P8 (here 2" = 2r). Define, using the coupling, the 
following objects for n ~> k: 

tlk = ~(~,k)tn~ 
~2~,2[" J' 

Then 

where ~ = ~fs 

E(r (  ~?~ i (n  ) ) ) - r( ~ , x , ( n  ) ) 

= E(r(rl  ~ - r(tl~)) + E(r( t l~)  - r(rl2)) + . . .  

+ E(r(tt". 2 ) - - r ( l l ~ - l ) ) +  E(r(~l~ 1)--r(r/n)) (4.1) 

The proof will be complete if we prove that each term on the r.h.s, of (4.1) 
is bounded below by the same strictly positive number p. In fact, define 

p=P[U~~ U~ ~ 1)>1, U] 1)<V~~ 1)<U~~ 

U~-2,-1)>1, U(2 1)>1] 

This choice is such that on the event above, whose probability is p, the 
following occurs for any t /such that r(rl)= 0: 

r(~,,a,(1)) ~< - 2  and r( ~"~r, xi(1) ) = - 1 

Using the relation (2.23) of Chapter VI of Ref. 11: if B ~ ( -  ~ ,  - 1 ], then 
E(rBt~ {o))_ E(r~)~> 1 (valid also in the asymmetric case), and the proper- 
ties of the Poisson processes, it follows that 

E(r(q~)- -r (qk+l) )>~P(r(qk)>r( t lk+l) )>~p ( O ~ k ~ < n - 1 ) ( 4 . 2 )  

Combining (4.1)and (4.2)yields 

1 , 1 2 O~n(2r, 21) --  ~n( r, 2r)  ~ np 

and the thesis follows by the definition of al ,  since p > 0. | 

Definition. 

~(L-, 23 = 
~1(2,., 23 + ~(2,., 23 ~I(L-, ~)  + =j(2~, 2r) 

2 2 
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Theorem 6. 

(a) ~('lr, , l , )<0 ~ p(~ ,  ~ , )=0  
(b) ~(2~, At) > 0 ~ p(2~, 2~) > 0 

(c) (2~, 2 l ) e ~ r  2 t ) < 0  

(e) ~(2~, 2;) = 0 =~ (2~, 2;) e I 1 

( f )  (2~, 2~) a I~ ~ ~(2~, 2~)/> 0 

Proof. Analogous to the proof of Theorem 2.27 of Chapter VI of 
Ref. 11. For  the parts (c) to (f), use radial families. 

So, if we define ~(2, 0) = ~(2c(0), 2s(0)), it follows that 

2c,(0) = sup{2 ~> 0: a(2, 0) ~< 0} 

The statement (f) above will be strengthened in Section6. The 
statement (c) can be improved as in Ref. 11 (Theorem 3.4 and Corollary 3.8 
of Chapter 6 of Ref. 11 have analogues in the asymmetric case) to 

(/~r, /~l) ~ ~ =:> OCl(/~r, 2 l )  = O~2('~r, 2 l )  = - -  (30 

Note that therefore 

5. THE SECOND CRITICAL LINE 

For each (2r, 2t) S N the invariant probability measures are the convex 
linear combinations of 6 e  and v).~,xt.(~~ Nevertheless the behavior of the 
system is not uniform on all of region/3 as concerns the domains of attrac- 
tion of the invariant measures. The next two theorems show this fact. 

Theorem 7. (Complete Convergence Theorem): If :q(2r, 2 t ) > 0  
and e2()~, 2t) > 0, then 

Vn c Z, ~.,~r,~,(t) --* flvzr, 2t+  (1 - fl) 6~ 

weakly as t ~ ~ ,  where/~ = P(z~r ' xl = ~)" 

Proof. It is the same as for Theorem 2.28 of Chapter 6 of Ref. 11. 

Theorem 8. If ~(2r, 2t) > 0 and min(~(2r ,  2t), e2(2r, 2t)) < 0, then 

(a) Vq c Z, [t/[ < 0% ~.r,;.,(t) -~ 6e~ , weakly as t -+ Go. 

(b) 3 t / c  Z s.t. ~r, xl(t) does not converge weakly to any limit as t --* oo. 
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ProoL 

(a) We must prove that for any finite A m ?7, P(r A 4: ~ ) ~  0 as 
t ~  c~. We consider the case ~(2~, 2 t )>0,  ~2(2r, J~ l )<0 ,  since the other 
case is analogous. Define ff = 7/c~ [mint/, ~ ) ;  then 

P(r c~ A 4: ~ )  <~ e(r c~ A ~ ~ )  <<. P(max A i> min(r162 

But by Theorem 3(b), min r ~ ~ as t ~ ~ ,  since a2(2r, 2l) < 0. 

(b) Consider again a~(2r, )~z)>O, 0~2()~, J~/)<0.  Since ~(2~, 2z)>0, it 
follows that ~(2~, 2z) > 1a2(2~, 2t)l. Choose 6 > 0 such that 
~2 (2 , , ) . t )+6<0  and define a = ~ l ( 2 ~ , 2 t ) + 6 ,  b = l ~ ( 2 ~ , 2 z ) l + 6 =  
Iez(2,, 2z) -  61. Observe that 0 < b < a. Consider now the intervals 

[ a ~+~ a k + l  1 
I~= b~+~, f f~- j ,  k = 0 ,  1,... 

and define 

t 1 = I2k ~ Z 
k 1 

Consider now the instants tk= (a/b) k+~, k=O, 1 ..... We will prove that 
P (0c~r . , l l ( t2n+l ) )~0  as n ~  and P(O~,,xl(tzn))~p()~r,2z)>O as 
/'/---~ o(3. 

By symmetric-duality, 

P(0 c r = P(~~ .;o,(tk) r~ r/= ~ )  (5.1) 

I f k = 2 n +  1, 

P(r176 + 1 ) m rlr ~ )  <~ P( [l(~./,ar(t2, + 1)), f (r  + 1))] ~ I2n + 1) 

<~P(l~,.z~(t2,+l) <az"+3"~-~45j + P (r~,.;.r(t2,+l) >az"+2)~ ~j 

\ t2n + 1 

And Theorem 3b implies the two last probabilities above convergence to 0 
as n----~ oo. 
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If k = 2n, write 

P( ~~ t2n ) (3 ~ ~ ~J) = P( ~~ t2n ) 5~ ~ )  

(5.2) 

But 

And we can prove as before that  this probabil i ty  converges to O as n ~ oo. 
Using (5.1) and (5.2), the p roof  is complete,  since P(~~ 
p(2l, 2~) = p(2r, 2t) as n --* ~ .  | 

The  condit ions of Theorem 7 are satisfied, for instance, by the super- 
critical BCP; and the condit ions of Theorem 8, by the supercritical OSCP.  

Theorems 7 and 8 mot ivate  us to define 

2c2(0) = sup{J. ~> 0: min(~(2c (0 ) ,  j`s(0)), ~2(2c(0), )~s(O))) < 0} 

Proposition 1, (a) I f 0 e ( 0 ,  n/2), then ~cl(O)~j`c2(O)<O0. 
(b) If 0~  {0, re/2}, then 2c2= oo. 

Proof .  (a) The first inequality is trivial. Theorems 6f and 4 imply 
that, if j` ~> j`~(0), then 

~1(2, 0)=~1(2C(0), 2S(0))~(J`--2c1(0))C(O) 

a2(j`, o) = ~S tc (O) ,  j`s(O)) >1 (j` - j`cl(o)) s(o) 

Therefore,  if 0 ~ (0, n/2), the functions 2 -~ ~l(j`, 0) and j` --* :~2(j`, 0) are 
strictly increasing on [2c(0), oo) and diverges as 2 --* oo. So 2c2(0) < oo. 

(b) If 0 = 0, then 2r = 22, 2 t =  0. The construct ion with the Poisson 
point  process in Sec. 2 yields l t >~N,  where (Nt) is a Poisson process with 
rate 1. Then c~(j`r, j`l) = - El,  <<. - t and ~2(2r, 2l) ~ - -  1 for any 2 >~ 0. 

The case 0 = re/2 is analogous. | 

Theorem 9. 0--4 ~.c2(0 ) is a cont inuous  function on (0, n/2). 

Proof .  It is analogous to Theorem 1. 
Then 0 ~ ac2 (O)=2(s in  0 + c o s  0)-12c2(0) is also cont inuous 

(0, n/2) and defines a curve on the phase diagram (2r, 2t). 
on 



518 Schonmann 

We define 

= {(2,, 2 < 2c2(0)} 

{(2r, 2 > 2c2(0)} 

Then ~ = ~1 w ~2 k..) 1 2 \ l  I . l 2 will be called the second critical line. 
At the moment it is clear that on ~1 the conditions of Theorem 8 hold 

and on ~2 the conditions of Theorem 7 hold (remember that 2 ~ ~/(2, 0) 
( i=  1, 2) are strictly increasing functions). But we do not know what hap- 
pens on  12, nor even if min (0~(2c2(0), 0). ~2(2c2(0), 0) is negative, positive, 
or null. The behavior on 12 and some of its geometric properties are the 
main subject of the next sections. 

It is easy to identify by elementary methods some subsets of ~2+ which 
are contained in ~r ~ or ~2. 

We saw already in Sec. 3 that 

{(2r, 2,) e ~21 ' 2r -~- 2, < 2 } C f f  (5.3) 

We can also prove easily that 

{(2r, 2,) e e 2 "max(2r, 2z) < 2c1(7~/4) } c d (5.4) 

To do it define )~-=max(2r, 2l); then p(2,, 2z)-~<p(2,)~)=0. Since it is 
known that 2c(zr/4)~> 1.5 (see Ref. 11, pages 288 and 289), this improves 
the previous result. 

Since rt increases one unit with rate 2 r and decreases at least one unit 
with rate 1, 2 r <  1 = > r t ~  - o e  and 0r 2l)<0. But if 2z>2  + =22c1(0) ,  
then c~(2r, 2z) > 0. Therefore 

{(2r, 2,) e N 2 . 2 r  < 1 and At > 2 + } m ~1 (5.5) 

And, of course, we can interchange 2r and A t above. 
Finally, it is immediate that 

{(2~, 2,) e N2 : min(2r, 2~) > 2~(~/4) } c ~2 (5.6) 

Now it is easy to see that if 0 < arctan(1/2~+), then 2~1(0)< 2c2(0). On 
the other hand, 2~1(~/4)= 2~2(rc/4). This motivates the definition 

0~ = inf{0 e [0, zc/2]: 2~1(0) = 2~2(0) } 

Then arctan(1/2~+)~0~.<rc/4. In Sec. 6 we will show that the first 
inequality is strict. We conjecture, but were not able to prove, that 0~ = re/4, 
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i.e., that for any asymmetry (0 ~ 7c/4) there are values of 2 such that cq and 
~2 have opposite signs. Observe that if Oc < ~/4, there may in principle be 
values of 0 between Oc and ~/4 such that 2~1(0) < 2~2(0). 

6. RELATION W I T H  O N E - D E P E N D E N T  
O R I E N T E D  P E R C O L A T I O N  

Many important results were obtained for the BCP by Durrett and 
Griffeath, (3) using a relation between this process and a one-dependent 
oriented percolation process. Simplified versions of this construction 
appear in Ref. 11, Chapter 6 and in Ref. 2. In fact this construction can be 
extended to the asymmetric case easily. Besides consequences which are 
analogous to the similar statements for the BCP, we obtain results about 
the geometry of l~ and 12 and about the behavior of the process on 12. 

We follow closely the development in Ref. 11. Fix 0 </3 < ~/2 and 
M > 0  so that M~/2 and M~ are integers. For (j, k)~I= {(j, k) e 7/2:k~>0 
and j + k is even }, define paraMlograms in Z x [0, oe ) by 

Lj~= {(x, t)eY_x ~Mk, M(k + l +~)J" 

O <~ x + c~2 t - M ( j~ + kc~ - j~ + ~) <~ ~M] 

Rjk= {(x, t ) ~  x IMk, M(k + l +~) ]" 

-flM <<. x-e l  t -  M ( j e - k e -  jl3-~) <~ O} 

See Fig. 2 and compare it with Fig. 2 in Chapter 6 of Ref. 11 (page 296). 
The following theorems are then analogous to the corresponding ones 

in the symmetric case. 

Theorem 10. If (2r, 2t) e ll, then ~(2r, 2t) = 0. 

Proof. It is analogous to Corollary 3.20, Chapter 6 of Ref. 11. 

T h e o r e m  11. For (~r,)~l)e~ and a<e l (2 r ,2 l ) ,  b<~2(2r,  2z) , 
limt~ ~ (I/t) logP(r,<at) and l im~oo (1/t) P(lt>-bt) exist and are 
strictly negative. 

Proof. Analogous to Corollary 3.22, Chapter 6 of Ref. 11. 

Theorem 12. If ( 2 ,  2 / ) e ~ ,  then there are positive constants C 
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Figure 2 

and y depending only on (2r, 2/) such that for all t~>0 P ( t < ~ A <  oo)<~ 
C[A[ e ~t. 

Proof. It is analogous to Theorem 3.23, Chapter 6 of Ref.ll. 

T h e o r e m  13. If (2r, 2 t ) e ~ ,  then there are positive constants C 
and 7 depending only on (2r,2t) such that for all t>>.O P(zA< ~)<~ 
Ce -yiAI. 

Proof. It is analogous to Theorem 3.29, Chapter 6 of Ref. 11. 

T h e o r e m  14. If ( 2 r , 2 t ) e g ,  then l i m , ~ t  l l~~ 2t)" 
p(2~, 2t) a.s. on [ z~  oo ]. 

Proof. It is analogous to Theorem 3.33, Chapter 6 of Ref. 11. 

T h e o r e m  15. ~1(2r,)~) and ~2(2r,2t) are continuous on 
~ w l  1 = d  c. 

Proof. As in the proof of Theorem 1, it is enough to prove the con- 
tinuity of x ~c~i(2r+ x, 2l+ x), X--'CZ~(2r+ X, O) and x - ~ i ( O ,  2~+ x) at 
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x = 0  for i = 1 , 2 .  These results follow in an analogous way to 
Theorem 3.36, Chapter 6 of Ref. 11. 

We explore now some consequences of these theorems. 

Corollary 1. If (2r, 21) e /1, then 

(i) ,vr >,~r ~ (,Vr, ,~,) e ~ 

(ii) 2'l> 2,=> (2r, 2'l)eM 

Proof. We prove (i). Theorems 4 and 5 imply ~().'r, 2l) > e(2r, 2t) = 0, 
where the last equality is due to to Theorem 10. Now Theorems 10 and 6c 
imply (2r, 2~)e~.  | 

Therefore no straight line of the form 2r = const or 2l = const inter- 
cepts /1 in more than one point. 

C o r o l l a r y  2. 2 + > 2 c  (remember that )~c=2c1(rc/4) and 2 + =  
22d(0) = 22c1(~/2)). 

Proof. (2 + , 0) ~ ll. Then, by Corollary 1, (2 + , 2 + ) ~ ~.  Consider the 
radial family with 0 = z/4 to finish the proof. | 

This corollary follows in fact also from Theorem 2 of Ref. 3. 

C o r o l l a r y  3. 0~>arctan(1/2c+). 

Proof. We know already that 0c ~> arctan(1/2 +). We have seen also 
that {(2 ,  2l)e~2+ �9 2~>2 +, 2 l< 1} = ~ 1 ;  then 

(i) 0 < arctan(1/2 + ) => c(O) 2c1(0) ~< 2 + . Since 2c1(" ) and (-) are con- 
tinuous functions, 

2~(arctan(1/2 + )) ~< 2 3/c(arctan(1/2 + )) (6.1) 

(ii) O<arctan(1/2c+)=,.c(O)2c2(O)>~2f. Since 2~2(') is also a con- 
tinuous function, 

2c2(arctan(1/2 + ))/> 2+/c(arctan(1/2c + )) (6.2) 

If 0~ = arctan(1/2 + ), then it would be necessary for equality to hold in 
(6.1) and (6.2), and then (2 +,  1)~ ll c~ l 2. Corollary 1 shows that this is in 
contradiction with the fact that (2 + , 0) e l~. 

Corollary 4. (2 ,  21)~12-~=-min(~1(2r, 2/), ~2(2~, 2l))=0.  

Proof. =~) By Theorem 15, for each 0~[0,7r/2],  2---r~1(2,0 ) and 
2--+~2(2,0) are continuous functions on [2~(0),ov). Therefore 2--+ 
min(~l(2, 0), ~2(2, 0)) is also continuous on [2~,(0), ~ ) .  On the other hand, 
by Theorem 10, min(~l(2~l(0), 0), ~2(2~1(0), 0)) ~< 0, completing the proof. 

822/44/3-4-16 
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) Take 2 = ( 2  r -]- 2t)/2 and 0 = arctan(2j2r). Then 2' > 2 =~ 
min(~l(2', 0), ~2(2', 0 ) ) > 0  and 2 > 2 ' = ~ m i n ( ~ ( 2 ' ,  0), ~2(2', 0 )<0 .  | 

Corollary 5. If (2 ,  2l) el2, then 

(i) 2" > 2, =~ (2;, 23 e ~2 

(i) 2; > 2, => (2", 23 e ~2. 

Proof. We prove (i). By Theorem4 cq(2', 2l)>~1(2~, 2t) and by 
Theorem 5, %(2',  2t) > ~2(2~, 2t). Then 

min(~(2'r, 2t), ~2(2',, 2l)) > min(~(2, ,  2~), ~2(2r, 2t)) = 0 (6.3) 

where the last equality follows from Corollary 4 above. Now (6.3) implies 
by the definition of ~2 and 12 that (2',, 2~) e ~2 vo 12, and Corollary 4 implies 
that (2', 2t) r l 2. | 

Therefore no straight line of the form 2~ = const or 2t = const inter- 
cepts l 2 in more than one point. 

7. STATIONARY DISTRIBUTION FOR THE EDGE PROCESS 
AND SOME OF ITS APPLICATIONS 

Notation: 

E =  {r/c 7/: r(r/) < 0% I~1 = c~ }. 
E= {rl~E: r(r/)=0}. 
Given x e Z ,  ~ / + x =  { y e Z :  y-xe~l} .  
S: E--./~ defined by S(r/) = ~/-  r(r/). 

Given a measure 12 with support on E, 

r~r,&(t ) = r(~,z,(t)). 

When no confusion is possible, we will write r, ~ instead of r~r,~(t ). 
Durrett (2) proved in the symmetric case, for 2 ~> 2 c, the existence of a 

measure # concentrated on E such that (S~,z,(t))  is a stationary process 
(in fact he stated the theorem there for a discrete time analogue of the 
BCP, but the proof for the BCP is essentially the same). Galves and 
Presutti (4) improved this result, showing in particular that for any initial 
configuration q, S~nr,&(t ) --~ 12 weakly as t --* o% for 2 > 2c. 

The techniques in Refs. 2 and 4 work also in the asymmetric case, 
giving: 

Theorem 16. Suppose (2 ,  21) e N u 1 1 .  Then there exists a 
probability measure # = 12xr, z~ with support on E such that 
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(a) (S~r,;.t(l), t/> O) is a stat ionary process. 

(b) (r(r t ~> 0) is a process with stat ionary increments. 

(C) E(r(~ur,,zl(1)) ) = ~l(2r, /~l)" 

(d) If ( )~ ,2 l )~2 ,  then V r / ~ ,  S~,~,( t )  ~ #  weakly as t ~  ~ .  

Remark. (d) implies that  on ~ ,  # is the only measure with property 
(a). We do not  know if this is true on ll. 

In the remainder of this section we apply these facts to prove that  as 
0 ~ 0, the line 12 is asymptotic to the straight line 2l = 1. Some of the inter- 
mediate results are of interest for their own right. For  this purpose it is bet- 
ter to use the cartesian coordinates ()~r,)~l) on the phase diagram instead 
of(0, 2). 

D e f i n i t i o n s .  
~r(2t) = inf{2r ~ ~ + : (2r, 2t) E ~2} 

= inf{21 > O: )~r(2/) < oo ) 

We know already from (5.5) that  q~ ~> 1. 

Proposition 2. If )Tr(2t) < 0% then ()7~(;~l) , hl)~12. If 2r(2t) = 0% 
then there is no ).~ ~ ~+  such that  ()~, 2t)~ 12. 

Proof. In a fashion analogous to Corollary 4, one can prove that  

min(~,(2r,  ;~l), a2(2r, 2t)) = 0 r 2r = )7r(2l) 

Using Corollary 4 we complete the proof. II 

Proposition 3. (a) 2t-~)Tr(21) is a strictly decreasing function on 
(~, ~). 

(b) limzt~r )7~(2t)= oo. 

Proof. 

(a) Take 2~>2l>~b. Then )7r(2l)<oo. Thus (f~r(fCl),)~1)El 2 and 
Corrollary 5 implies that  (;~r(2l), 2~) ~ ~2. Since ()~r(2~), ,~;) ~ 12, 
L(,~) < L(,~,). 

(b) P a r t ( a )  implies that  s  a ~ ( - o o ,  co] as '~l "~ ~b. Suppose 
a < oo. Then for b > a and 0 = arctan(~b/b), we would have 

(i) if 2 < (~b + b)/2, then (2c(0), 2s(0)) r 12 since ,g,(2t) = oo for 2l < ~b. 

(ii) if 2~>(~b+b)/2, then (2c(0) ,2s(0))r  2 since for 2l~>~b, 2,(2l)~< 
a<b.  

Therefore 2c2(0)= o0. Since ql ~> 1, this contradicts Proposit ion 1. | 

We will use now Theorem 16 in order to prove that  ~b ~< 1. 
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D e f i n i t i o n .  For  fixed (2r, 21) ~ ~ t..) l~, take a random configuration 
~/E E with distribution/~;.,.~r Define now the random variables 

Xo=  0 

X e = - s u p { x < X ~  ~ ' x ~ q }  

X oo (X,. = x), or just E(Xi) We will use also the notation Ea~.;,(;) = ~.~=o x#~,;.~ 
if no confusion is possible. 

In order to prove the next lemma we introduce now a different con- 
struction of the processes (r t ~> 0). Given u > 0, k positive integer 
and r/~ E, we define the random function t --* ~(~'k")tt~ from Eku, oe to E in ~r,21 I ] 

the following way: 

(i) 7-l".k")~ku~ 

(ii) ifnu<<.t<<.(n+ 1)u, with n>~k, then 

where ~ - Y(n'k")tt~ - - ~ 2 r , 2 1  \ 1" 

As before, we will omit 2 ,  2 t if this does not lead to confusion and 
abbreviate ((" '~ ("(t)  and (~x~'k"l(t)= ((~'ku)(t). 

The fact that (~,2,(/)) and ((~.~,(t)) hve the same law follows 
immediately from the properties of the Poisson processes with which they 
are constructed. 

This construction was introduced in Ref. 4 and as we shall see is very 
suitable for some couplings. 

L e m m a  1. 

(a) If (/~r,)LI) (3 ~ ,  then #~,,x,(X k > kd) <<. Ck3/2e 7dl/2, where C and 
depend only on 2r and 2 t. 

(b) For  fixed (2r,2t) e ~ ,  #~,,~;(Xk>kd)<~Ck2e ~d~/2 for any 2;~>2l, 
where C and 7 depend only on 2r and 2 t. 

(c) E~,,~t(Xk) <~ Ck 5/2, where C depends only on 2r and 2 t. 

Proof. 

(a) Take t=dk/2(2r+2t) and u as the integer such that u2~<t< 
(u + 1)2. Define the random variable 

L = inf{l: ~2;~)(l + 1 ) #  ~5} 
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Define also the events 

where 

E~(I) = [r(~(z-'z")(t)) ~ [ ~ 1 ( / - -  lu)/2, 2),r(l --/u)]] 

E2(l) = [ / ( ( ( z + " ) ( t ) )  e [ 2 2 , ( t  - lu), 72(t - lu)/23 ] 

E(t)  = G ( t )  n &(1)  

F,( l) = [ ~ l z " ) ( t )  c~ A ~( l) r ~ 3 

A'=( ~1 + cr t " 8  kt'~k~ l q'-~2 t(i-~- 1)]  

\16(2~ + 2,) i, 16(2~ + 2,) U + 1) 

A~(I) = A ~ -  ~2(t - lu)/2 = { x  ~ ~: x + et2(t - lu)/2 ~ A~} 

k 1 
F(l)= ~ F,(t) 

i=0 

We consider the contact process starting from the distribution #. Then 
S(U(t )  has also distribution # and we will consider r/in the definition of Xk 
as S(" ( t ) .  Then if v is the largest integer such that uv < t/2, 

P ( X k  > kd)  <~ ~ P ( L  = l, X k > kd )  + P ( L u  > t/2) (7.1) 
/=0 

But, recalling the notation p = p(2~, 2 , )=  P ( r ~  ~ ) > 0 ,  

P ( L u  > t/2) <~ (1 -- p)~ 1 <~ Ce-~tt/2 <~ Ce-~a,/2 (7.2) 

And 

P ( L  = l, Xk  > kd )  = P ( L  = 1, Xk  > kd, r(o,,u) < oo ) 

+ P ( L  = l, Xk  > kd, ~(o,,~) = oo ) <~ P(u ( l  + 1 ) < r (~ < co ) 

+ P ( X ~  > kd, z (~ = oo ) (7.3) 

The first term above can be controlled using Theorem 12 

P(u( l  + 1 ) < r I~ < ~ ) = P ( u  < r ~ < ~ ) ~ Ce -~u <~ Ce -r"2  <~ Ce -~al/2 (7.4) 

For the other term in (7.3) we write 

P ( X k  > kd, r(o,,,) = oo) ~< p(EC(I))  + p(Fr  

+ P ( X k > k d ,  r(~ = 0% E(1), F(1)) (7.5) 
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and note that by Theorem 11 and exponential bounds for Poisson 
processes, 

p(  E~( l) ) <~ C e -  ~(,- t~) <~ C e -  ~'/2 <~ C e -  ~d (7.6) 

And by symmetric-duality and Theorem 13 

P(F~(l) ) = P(~i;.r(t -- lU) = ;3) <<. P(Z~I~ ~ < 00 ) <<. Ce--~IA't = Ce-~'a 

Thus 

P(U(I ) )  <~ Cke -ra (7.7) 

Finally note that the event [ X k > k d ,  z (~ m, E(I), F(/)]  is void. This 
follows from P3 in Sec. 2 and the way we defined E(l) and F(l). Combining 
(7.1) to (7.7) yields 

P ( X  k > kd) <~ ~ Cke ~d~/2 + Ce -Tdl/2 ~ Ck3/2e ~dV2 
l = 0  

(b) Take u, v, t, and L as above. For  typographical reasons we write 
It = Itxr,;~,, # ' =  #;.r,a;" Define on the same probability space, as in the proof 
of P8 in Sec. 2, (~.,.a,(s)) and (~.~;(s)).  The initial measures It and #' can 
be taken independently. We define now the random configurations ~/(s) and 
r/'(s) by 

(r /(s)  = ~,L,)ts~ where ~ = (~,,~,(Lu) 2r,~-I K / 

i f s > L u ,  t(q,(s) ~ (~''cu)ts~;.r,4, ~ ~ where ~'=(~,~;(Lu)  

Then S q ( s ) = o #  and S r l ' ( s ) = o # ,  (where =D means equal in dis- 
tribution). 

The important property of the coupling above is that on the events 
[L  =/ ,  z (~ = oo] the following holds for t > l,: 

r/(t) ~ Rt c r/'(t) ~ Rt (7.8) 

where Rt = [/(~z~;l")(t)), r(((azz'u)(t))]. 
Define now the events 

G(l) = [r(q'( t))  - l (~z~/")( t))  < 2(2r - 2t) t] 
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Below we use the no ta t ion  7~ = O~i(2r, 2 l )  , where i = 1, 2 or nothing.  

P(X'k > kd)  <<. (7.9) 

P(L  = l, X'k > kd)  <~ 

P ( L = I ,  X 'k>kd ,  z (~ = ~ ) ~ <  

• P ( L  = l, X'k > kd)  + P(Lu  > t) 
l = 0  

P(u(l  + 1 ) < z r176 < ~ ) 

+ P ( L  = l, X'k > kd, z (~ = ~ )  

P(r(~f;~{z")(t)) > 2)~, t) 

+ P( l (~ f~ / " ) ( t ) )  < 2)~,t) 

(7.10) 

+ P ( L = I ,  X 'k>kd ,  z I~ = ~ ,  G(l)) (7.11) 

F r o m  exponent ia l  bounds  for Poisson processes the two first terms above  
are smaller  than  Ce-~t- 'u)<~Ce-~d.  The last one can be control led as 
follows: 

P( L = l, X'k > kd, z (~ = ~ ,  G( I) ) 

<~ P (L  = l, z (~ = o% Ir/(t) c~ R,] < k) 

+ P ( L = / ,  X'k>kd ,  z(~ = 0% G(I), Ir/(t) ~ R,[ >~k) (7.12) 

But (7.8) implies that  

EL = l, z ~~ = ~ ,  a(l) ,  Iq(t) ~ R,I ~> k ] c  [X~ ~< 2(2r + 2,) t = kd] 

and the last probabi l i ty  in the r.h.s, of (7.12) is zero. Fo r  the other, write 

P([q(t) c~ R,] < k, L =  l, z(~ = ~ )  

<<- P( l (~z~ /" ) ( t )  ) ~ -- ~2 t/4) + P(r(~z; . / " ) ( t )  ) <<. ~, t/4) 

+ P(r(~zX/~)( t ) )  - l ( ~ z ~ / ~ ( t ) )  > c~t/2, [r/(t) n R,I < k, L = l, z (~ = ~ ) 

(7.13) 

By Theo rem 11, the two first terms above  are smaller  than  Ce - ~  t~)<< 
Ce-~a. And using par t  (a) of  the theorem,  the last term is bounded  above  by 

( P(Xk  > ~t/2) = P X k > 4(2r + 2t) j ~< Ck3/2e ~dl/2 (7.14) 

The thesis follows now from (7.9) to (7.14). No te  that  the extra  factor  k 1/2 
comes f rom the sum in (7.9). 

(e) Using par t  (a) above,  

E(X~) = k E ( X k / k  ) = k I '~ P (Xk /k  > x)  dx <~ k I ~ Ck3/2e -ex~/~ dx ~< Ck 5/2 | 
Jo Jo 
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T h e o r e m  17. If A~ is fixed and 2t--* o% then 

(a) X1 --* 1 in probability. 

(b) E~,~,(Xx) ~ 1. 

Proof. 

(a) For any t>~O, Sr =o#. Take t= (At) m; then 

P( X 1 = 1)P( - 1 ~ S~"( t ) ) >~ P( U11 > t, U~I :> t, U~ 0'1) > t, U~ O' -1 )<  t) 

=e (2+2r)t(1-e-&t) 

which goes to 1 as 2~ ~ or. 

(b) For any 2~, (Ar, 4) sM. Given ~>0,  by Lemma lb, if At>4, then 
#~r,~(X~ > X) <<. Ce-~X~/~, where C and y depend on Ar but not on At. Thus it 
is possible to choose D > 0 such that, for any At ~> 4, 

But 

fO~ ~2r, j.l(X1 >X) d ~ 2  

E(X1) = ]z;~r,).t(X 1 > x)  dx ~ H,~r,;~t(X1 = 1 ) 

+ #~.r,~(XI > I )" D + I~,~t(Xl > x)  dx  

Using part (a) of the present theorem, if At is large enough, then 
#ar,~,(X1 > 1)<s/2D. Thus E(X1)~< 1 +e. | 

D e f i n i t i o n s .  rn(2r, 2t)=E~,x~(X1). We will write just m if no con- 
fusion is possible. 

r%,,~,(t) = r(~%,~,.)) 

As before, we will write sometimes just r~. 
The following theorem is intuitively clear (but not so easy to prove): r; 

increases one unit at rate A r and decreases in mean m(Ar, At) at rate 1. 

T h e o r e m  18. Consider (A r, At) s ~ .  Then ~1(2,, At) = 2r-- m(2r, At). 

Proof.  By Theorems 16b and c, Er" t = t ' ~ l .  Therefore 

E C d 
~ l = l i m , ~ o  t - d r  Er;  (7.15) 



Asymmetric Contact Process 529 

If r ( ' )  were a cylindrical function, it would be enough to do now a 
calculation with the generator.  Since this is not  the case, we will use some 
compar ison  processes. Consider  the DPS  with which (r is constructed,  
and define, for each q e ~, r/~ by: 

(i) If U~I > t, U~ > t and U] ~ ~< t, then t/, = 1 

(ii) If U ~ > t  and Ul<~t, then t / t = 0  

(iii) If U~I > t and U~ ~ 1) > t, then r/, = 0 

(iv) If U~I~< t, then q,=sup{xsrl:  U~>t} 

Then, almost surely, r(t/,)~< r(r r 7. The distr ibution of r(t/~) can be 
easily obtained: 

P ( r ( r / , )=  1 ) =  (e ' ) 2 (1 - -e  ~')  

P(r(tl,) = O) = (e t)(1 - e t) + e 'e ; ' '  

e(r(tl,) = -Xk( t l ) )= (t - - e  ')ke ', k = 1, 2 .... 

where Xo(r/) = 0, Xk(rl) = -- sup { x ~ q: x ~ X~_ 1 ( q )  }, k = l ,  2 ..... Then 

E(rT)>~E(q,)=(1-e-;r ')e -2~- ~ ( 1 - e  ')he tXn(r/) 
n = l  

Using mono tone  convergence 

E(r~) >~ f E(~t) d~(t/) = (I - e-;"~) e - 2 t -  ~ (I - e -t)ne-t f Xn(t]) dfl(r]) 
n = l  

Using Lem ma  lc, 

Thus 

f Xn(~) d~(rl) = E2r,2l(Xn) ~ Cn 5/2 

( 1 - e  t)"e-t f x,(tl) dlt(rl)~O 
n = 2  

as t ~ 0, and by (7.16) 

(7.16) 

lim inf E(rt~) >~ ,~r--m()~r, 2l) (7.17) 
,~o  t 
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Now define for, each ~ ~ E, ~t by 

(i) If U~~ then ~t=inf{n~>0: U~"."+l)>t)  

(ii) If U~~ t and U~I> t, then ~ t = 0  

(iii) If U~ 0'1) > t, U~ ~< t, and U~ x~(e),x~(r + 1) > t, then (~ = - ~ r l ( ( )  

(iv) Otherwise ~t = 0 

Then, almost surely, r(~,)~> r(r162 r~. Therefore 

E(r~)<<.E(r(~t))=-e-Z~rt(1-e-')Xl(~)+ ~ (1-e- ;~r t )"e  ~r, n 
n = l  

And as before we can conclude that 

E(rf) 
lim sup ~< 2r - m(2r, 2t) (7.18) 

t~o t 

The theorem follows from (7.15), (7.17), and (7.18). | 

The following theorem shows that l 2 iS asymptotic to the straight lines 
2 t = l a n d 2 ~ = l .  

Theorem 19. ~b=l. 

Proof. Using Theorem 18, we obtain 

~ 1 ( 2 r ,  2 l )  = 0~1(2l, 2 r )  = / ~ l -  m(2h 2~) 

By Theorem 17, if 2 t>  1 is fixed and 2 ~  ~ ,  then 

~2(2r, 2t) --" 2l-- 1 > 0 

If 2r > 4, then by Theorem 4, 

al(2r, 2z)/> ~1(4, 2~) + ( 2  r - -  4) 

Since (4, 2l)eM, ~1(4, 2 l )>  -- ~ and 

as 2~ ~ ~ .  Therefore, if 2 t > 1, )~(2~) < ~ and ~b ~< 1. Since we know already 
that ~b/> 1, the proof is complete. | 

8. BEHAVIOR ON 12\It 

Remember that 

12\ll = {(2r, 2,)E ~ 2 .  m a x ( ~ ,  ~2) > 0, min (~1, ~2) = 0  } 
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On these points Theorems 7 and 8 do not apply. In their place we have 

Theorem 20. If ~l('~r, 2l) > 0 (resp., ~2(/~r, 2l) > 0) and 
~2(2r, 2 l ) = 0  (resp., cq(2r, 2 l )= 0), then 

(a) for [ql < oo, ~"(t) ~ (1/2) P(z" = oo) v + (1 - (1/2) P(z" = oe)) ~ ,  
as t ---+ o(3. 

(b) for / ( t / ) > - o o  (resp., r ( t / )<oo)  and I t / l = o e ,  ~" ( t )~  
(1/2) v + (1/2) ~ ,  as t ~ oe. 

(c) there are q c 7/such that ~"(t) does not converge as t ~ oo. 

The proof of this theorem is based on the following theorem, proved 
in Ref. 4 for the symmetric case and easily extended to the asymmetric one. 

Theorem 21. If (2r, 21) eM, then for any r/ such that [t/[=oo, 
r( t / )<oe and any ( such that I~1=oo, l(~)<oo the processes 
( e ( rT /~2-~ le -2 t ) ,  t>~O) and (~(l~/~+~2~ 2t), t>~0) converge in law when 

~ 0 to Brownian motions which have strictly positive diffusion coef- 
ficients, respectively ar 2 and ate independent of ~/ and (. 

From Theorem 21 it is clear why Theorem 20 should hold: one edge 
spreads out while the other fluctuates randomly past finite sites; hence the 
1/2. 

P r o o f  o f  T h e o r e m  20.  

(a) We must prove that for any A c7/  such that IAI < 0% 

P ( ~ " ( t ) c ~ A v ~ f 2 5 ) - - . ( 1 / 2 ) P ( z " = o o ) v ( ~ : ~ n A ~ ( 2 5 )  as t -~oo 

Notat ion:  a = l(q) - 22l t  '/3, b = r(q)  + 22r t~/3, C = I (A)  -- 22~t z/3, d =  
r ( A ) + 2 2 1 t  '/3. For each xeT/, (+ = [x, o o ) ~ 7 / a n d  (x  = ( - o o ,  x]c~Z.  

Consider the events 

E = I-~"(t) c~ A ~ ~ 3  
F1 = [-~-n > tl/3 -] 

F2 = [~(z , t - ta /3)( t  ) (3 A =/= ~ ] 
G 1 = [~n( t l /3 )  ~ [ a ,  b ] ]  

G2 = [~(~2 ~c3, tv3)(t ) c~ A = f2~] 
H = [l(~(r - tl/3)) :> d] 

I =  [l(~(r - / 1 / 3 )  < C] 
J =  [r(r -- t ~/3) > d] 

K~ = Jr" > t]  
K2 = [~z(t) c~ A r ~ ]  

Then 

P(E) = P(EFIF2) ~ p(Gca) + P(G~) + P(FxF2H ~) + P(EGI G2H) 
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But [ E G I G 2 H ] = ~ 5  and by the properties of Poisson Processes, 
P(G~) ~ 0  and P(G~) - . 0  as t--, ~ .  Also P(FIF2H C) = P(F1)" P(Fz)" P(H), 
and as t--* ~ ,  

P(F1) --* P((" = oo) 

P(F2) --* v((: ~ c~ A # ~ )  

P(H)--.  1/2 

where the last limit follows from Theorem 21. Thus 

lim sup P(E) <~ (1/2) P(~" = oo) v(ff: ~ n A # ~Z~) 
l ~ O O  

On the other hand, 

P(E)>~P(EGIG2IJKIKz)=P(GIG2IJKtK2)-P(ECGIG2IJK1K2) (8.1) 

But from the nearest-neighbor nature of the interaction, it follows that 
[ECGIGzlJKIK2] = ~ .  For  the other term, we write 

P(G1G2IJK1K2)=P(F1FzI)-P(F1F2I(GIGzJK1K2) ~) (8.2) 

and 

P(F 1 F 2 I) = P(F 1 ) P(F2) P(I) (8.3) 

P(F, F2I(G1 GzJKIK2) c) <~ P(FIK~I) + P(F2K~) + P(G~I) + PG~) + P(JC) 

(8.4) 

Theorem 11 implies that p(jc)  ~ O, as t --* oo. 
Theorem 12 implies that P(FiK~. ) --* 0 as t --* oo (i = 1, 2). 
Theorem 21 implies tat P(I) --* 1/2 as t ~ oo. 
Then (8.1) to (8.4) imply that 

lim inf P(E) >~ (1/2) P(z '  = ~ ) v(~: ~ c~ A # ~ )  

(b) It is analogous to (a). 

(c) Choose a > a l  and define the ti, i = 0 ,  1, 2 .... by 

t o = 1, ti+ 1 = (ati) 3 

Define the intervals I k = 1-- atk, - t  1/3 ]. And consider the configuration 

k = l  
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Then 
P(0 c ~"(t2,)) --' p(2r, 2,) as n ~ oc (8.5) 

and 

p(oc{"(tz ,+i))--+(1/2)p(2r,  2,) as n ~ o o  (8.6) 

Since p(2r, 2t) > 0 on 12\l~, this is enough to prove the theorem. 
The proof of (8.5) and (8.6) is similar to the proof of parts (a) and (b) 

of the present theorem. We leave it to the reader. | 

A problem connected with Theorem 20 is the determination of the 
points ( 2 ,  2t)e  12\ll such that cq > 0 and 0~ 2 = 0 and those such that ~1 = 0 
and c~2 > 0. Unfortunately we give only a partial answer. 

Theorem 22. Suppose that (2r, 21) e 12\l~. Then 

(a) arctan(2t/2r) < 0c =~ cq(2r, 2l) > 0 and ~2(2r, 2l) = 0. 

(b) arctan(2t/)~r) > ~/2 -- 0c =~ cq(2~, 2l) = 0 and ~2(2r, 2t) > 0 

Proof. (b) follows from (a) by symmetry. To prove (a), we use 
Theorems 4 and 5 to write for 2~ > 4, 2~ > 1 

~ (2 r ,  2t)~> ~(4 ,  2~) + 2r -4~>cq(4 ,  1 ) + 2 r - - 4  

From Proposition 3b it follows that )~r(2t) is as large as we want if 2~ is suf- 
ficiently close to 1. Since e~(4, 1 )>  - o %  there exists a > 1 such that 

(2~, 2z) E/2, 21<'--a~l(2r, 2l)>0,  ~2(J~r, 2l)-----0 

But by Theorems 15 and 9, 0 ~ a~(2~2(0 ), 0) = ~,-(2~2(0) c(O), 2c2(0) s(O)) 
(i = 1, 2) are continuous functions. If there were a point (2r, 2~) e 12 such 
that ~2(2r, 2z) > 0 and el(2r, 2l) = 0 and arctan(a/s < 
arctan(2~/2r)< 0~, then there would be another point (2~, 2~) such that 
arctan (~t /~)<O c and el(~r ,~t)=e2(~'~,~ ' t )=0,  which contradicts the 
definition of 0~. | 

9. S O M E  OPEN P R O B L E M S  

( l )  One obvious important problem is the behavior of the process on 
lt. But this is just an extension of the same still open problem in the sym- 
metric case. 

(2) Is 0 c = rt/4? 

(3) If the answer to (2) is negative, are there values 0c< 0 < zt/4 such 
that 2c~(0) < 2c2(0)? 

(4) Get more information about the geometry of l~ and 12, for instance 
the concavities. 
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